PRELIMINARY RESULTS OF THE HAWAII KALINA CYCLE® FEASIBILITY ANALYSIS

Innovative Energy Systems Workshop

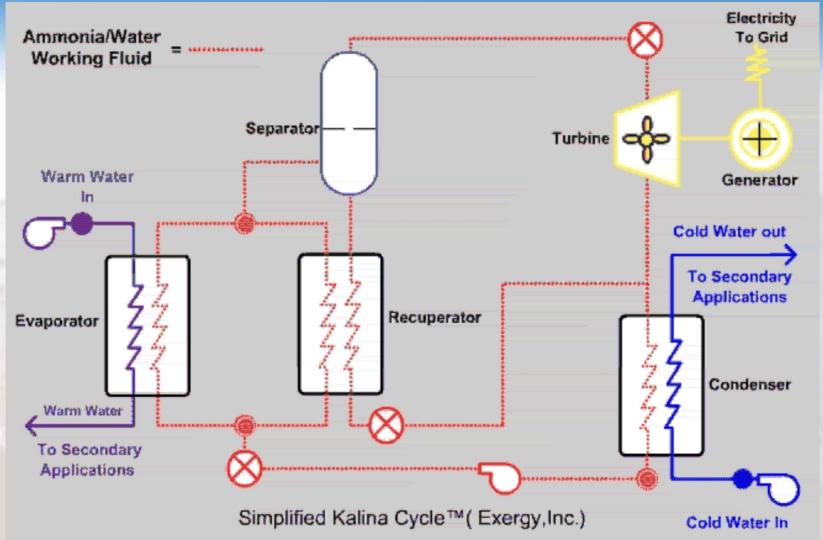
Honolulu, Hawaii March 19 – 20, 2003

Sponsored by:

State of HawaiiDepartment of Business, Economic Development, and
Tourism

PRELIMINARY RESULTS OF THE HAWAII KALINA CYCLE® FEASIBILITY ANALYSIS

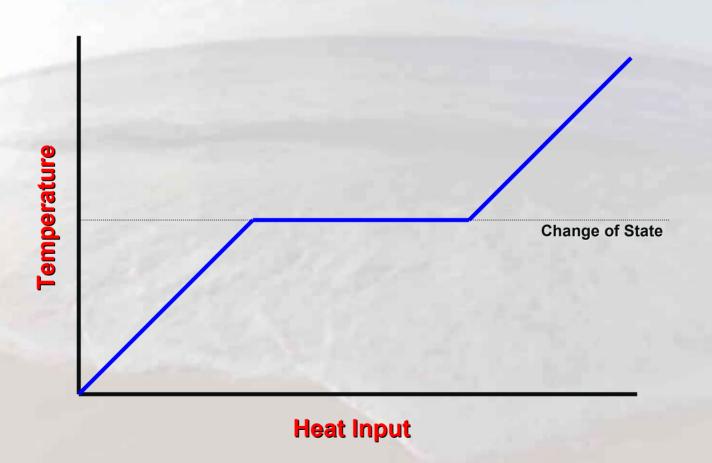
- Introduction
 - What is Kalina Cycle?
 - Comparison to Rankine Cycle
- Historical Applications
 - California, Iceland & Japan
- Identification of Promising Hawaii Applications
- Conclusions



The Kalina Cycle®

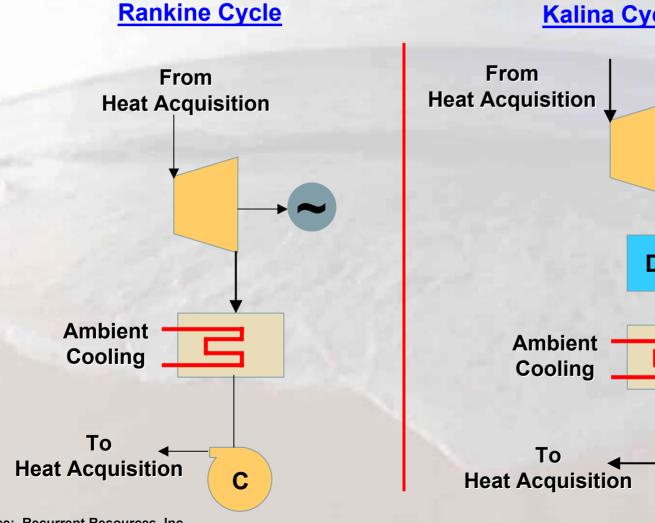
- Binary Energy Conversion Cycle which uses Ammonia/Water Mixture as the Working Fluid
- Variable Mixture (Concentration Changes Throughout the Cycle) - Allows Working Fluid to Efficiently Match the Characteristics of the Resource

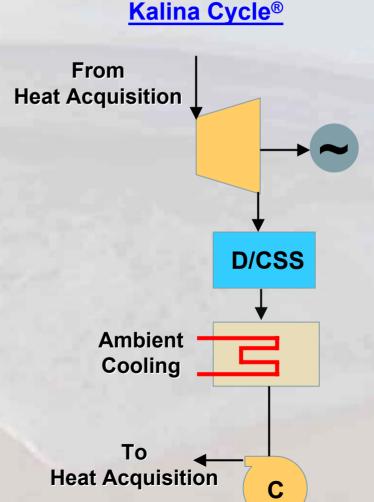
Simplified Kalina Cycle®

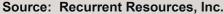


Ammonia/Water Safety Concern?

- Needs to be Used Carefully
 - -Not Classified as Hazardous
- Less Hazardously Flammable than more Conventional Working Fluids
- Comparatively Environmentally Benign
- Ammonia Vents Easily, is Self-Alarming




Single Working Fluid Thermodynamic Limitation

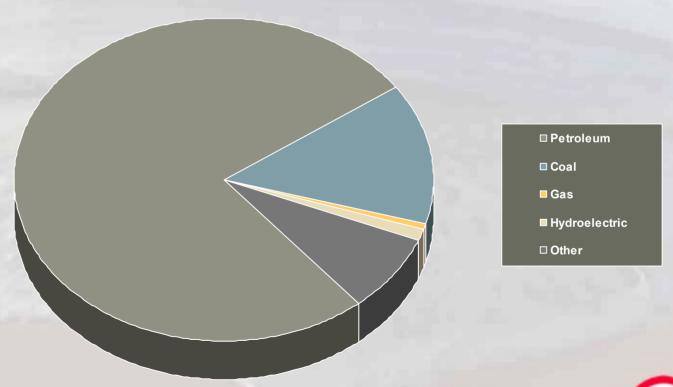


Simplified Comparison of Rankine Cycle to Kalina Cycle®

Operational Kalina Cycle® Plants

3.5 MW Kalina Cycle® Plant Canoga Park, CA

Courtesy: Exergy


Husavik Geothermal Plant "First Two Years"

 Demonstrated High Reliability (Availability Rated in the High 90%)

 Operates Successfully Largely Unattended

Proved to be Quiet, Sturdy with no Odor

Energy Generation by Source, 1999

Source: Energy Information Administration

Ten Largest Plants by Generating Capacity, 1999

	Primary	Oncorations	Not Common
Plant	Energy	Operating	Net Summer
Platit	Source(s)	Company	Capability (MW)
1. Kahe	Petroleum	Hawaiian Electric Co.	582
2. Waiau	Petroleum	Hawaiian Electric Co.	457
3. Kalaeola Co-gen	Petroleum	Kalaeloa Partners LP	261
4. AES Hawaii, Inc.	Coal	AES Hawaii, Inc.	189
5. Maalaea	Petroleum	Maui Electric Co.	168
6. Honolulu	Petroleum	Hawaiian Electric Co.	100
7. Port Allen	Petroleum	Kauai Island Utility Co-op	97
8. H-Power	Waste	DFO Partnership	61
9. Hawaiian Com& Sugar	Coal	Hawaiian Coml& Sugar	58
10. W H Hill	Petroleum	Hawaiian Electric Light Co.	35

Source: Energy Information Administration

Residues/Pollutants/Effects (qualitative)

	Coal	Oil	Natural Gas	Biomass/ Waste	Nuclear Energy	Solar Energy
CO						
CO_2						
CO_2						
NOx						
SO ₂ (Plaster)						
Dust (soot)						
Ash						
Radioactivity						
Heavy Metals						
Waste Heat						
Material Intensity						
Albedo						
Water Vapor						

How Much Waste Heat in Hawaii?

~ 9 billion kW_h/yr Electricity from Fossil Fuels

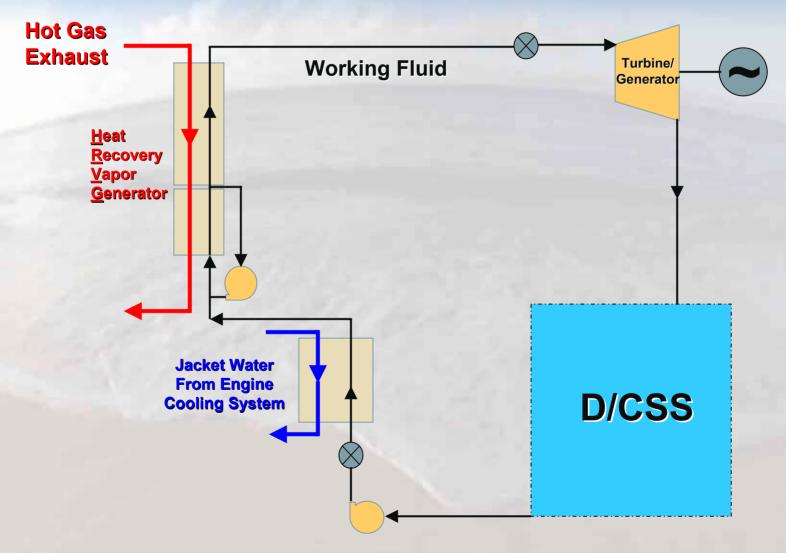
(Hawaii Data Book)

- Conservative Estimate:
 - From Stack Gases: ~ 356 million kW_h/yr
 - From Cooling Water: ~ 534 million kW_h/yr
 - Total: ~890 million kW_h/yr (~10% of Total Production!)

The Waste Heat Potential in Hawaii is Quite Significant!

Petroleum/Diesel Power Plants

Courtesy: HECO


Maalea Power Plant - Maui

Kahe Power Plant - Oahu

Simplified Conceptual Flow Diagram for Diesel Combined Cycle

Peak Design Capacity for Diesel Combined Cycle / Bottoming Cycle Depends Upon:

- Diesel exhaust gas temperature and flow
- Fuel sulfur content (limits the min. stack temp.)
- Type of cooling available (water or air cooled)
- Capacity of diesel generating station
- Site ambient conditions
- Diesel back pressure requirements
- Bottoming cycle design

Design Capacity Comparison: Kalina Cycle® vs. Rankine Steam Bottoming Cycle

First Case Study:

Kohinoor Energy Ltd. – Pakistan 8x Wartsila 18V46 diesel units

- Existing Rankine Bottoming Cycle = ~ 8 MW_{net}
- Initial Kalina Cycle® Design = ~ 13.3 MW_{net} (+66%)
- Optimized Kalina Cycle Design = ~ 16.0 MW_{net} (+100%)

Second Case Study:

Kohinoor Energy Ltd. – India

4x Wartsila 12V46 diesel units

- Design Rankine Bottoming Cycle = ~ 1.87 MW_{net}
- Kalina Cycle® Design = ~ 3.24 MW_{net} (+73%)

Case Study Example: Turkey Basic Assumptions

- 100 MW capacity (PPA ~ 876 million kWh/yr)
- Man B&W 18-V-48/60 diesel unit (18.39 MW)
- Three competing scenarios:
 - 7 DG units, no bottoming cycle, one DG in standby
 - 6 DG units, no bottoming cycle, no DG standby
 - 6 DG units, Kalina Bottoming Cycle ® (11 MW), no DG standby

Case Study: Turkey Basic Assumptions (con.)

- Capital Costs
 - DG Station (\$650/kW)
 - Kalina Cycle® (\$1200/kW)
- O&M Costs
 - DG Station (\$0.01/kW_{hr})
 - Kalina Cycle® (\$0.005/kW_{hr})
- Fuel Costs (\$0.20/kg)

Case Study Summary

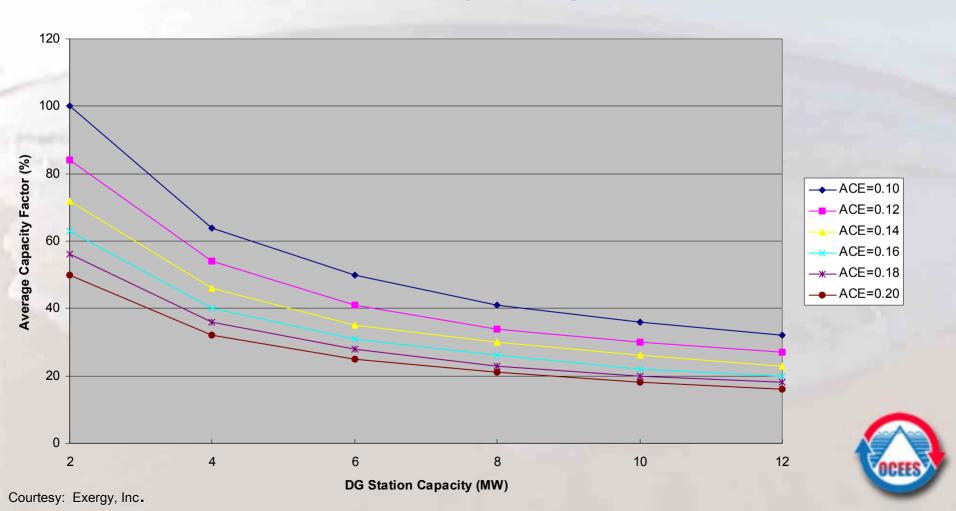
Comparison/ Analysis	6 DG & KCC	<u>6 DG Only</u>	7 DG Only
Annual Generation	876 million kW _{hr}	835 million kW _{hr}	876 million kW _{hr}
Annual Gross Revenue	56.94 \$million	54.3 \$million	56.9 \$million
Annual Fuel Cost	28.47 \$million	29.85 \$million	31.36 \$million
Annual Lube Oil Cost	1.00 \$million	1.04 \$million	1.10 \$million
Annual O&M Cost	8.32 \$million	8.35 \$million	8.76 \$million
Total Operating Cost (\$/yr)	37.78 \$million	39.25 \$million	41.22 \$million
Total Operating Cost (\$/kW _{hr})	0.043 \$/kW _{hr}	0.047 \$/kW _{hr}	0.047 \$/kW _{hr}
Capital Charge	0.015 \$/kW _{hr}	0.013 \$/kW _{hr}	0.014 \$/kW _{hr}
Total Generation Cost (\$/kW _{hr})	0.058 \$/kW _{hr}	0.060 \$/kW _{hr}	0.061 \$/kW _{hr}
Gross Operating Profit	19.16 \$million	15.05 \$million	15.72 \$million
Kalina Cycle Payback Period		3.2 years	0.4 years
Simple Return on	22.5%	21.0%	18.8%

Investment

Economics of Bottoming Cycles for Large Diesel Generation Stations

Capital Costs:

- Kalina Cycle[®] less than Rankine Bottoming Cycle (\$/kW)
- Kalina Cycle ® more than diesel generation power plant
- Savings in fuel cost more than makes up for additional capital
 - Savings on fuel is dependent upon fuel type
- Include impact of standby diesel generation capacity for frequent diesel unit maintenance


Economic Viability of Adding Kalina Bottoming Cycle to Existing Diesel Generation Station:

- Size of the Diesel Station
- Number and Capacity of Each Diesel Unit
- Diesel Unit Annual Average Capacity Factor
- Diesel Unit Exhaust Heat Rejection
- Capital Cost of the Kalina Bottoming Cycle Power Plant
- Avoided Cost of Energy (Purchased Energy Tariff or cost of fuel and O&M)
- Kalina Cycle Power Plant O&M
- Escalation Assumptions
- Discount Rate or Cost of Capital
- Debt Assumptions
- Tax Assumptions

Diesel Generation Combined Cycle Screening Criteria

Chart 1: DG Combined Cycle Screening Criteria

Coal Burning Facilities

AES Hawaii, Inc. - Oahu

Biomass/Waste Power Plants

Courtesy: HECO

Biomass Power Plant - Maui

H-Power Plant – Oahu (Waste)

riesy. HECO

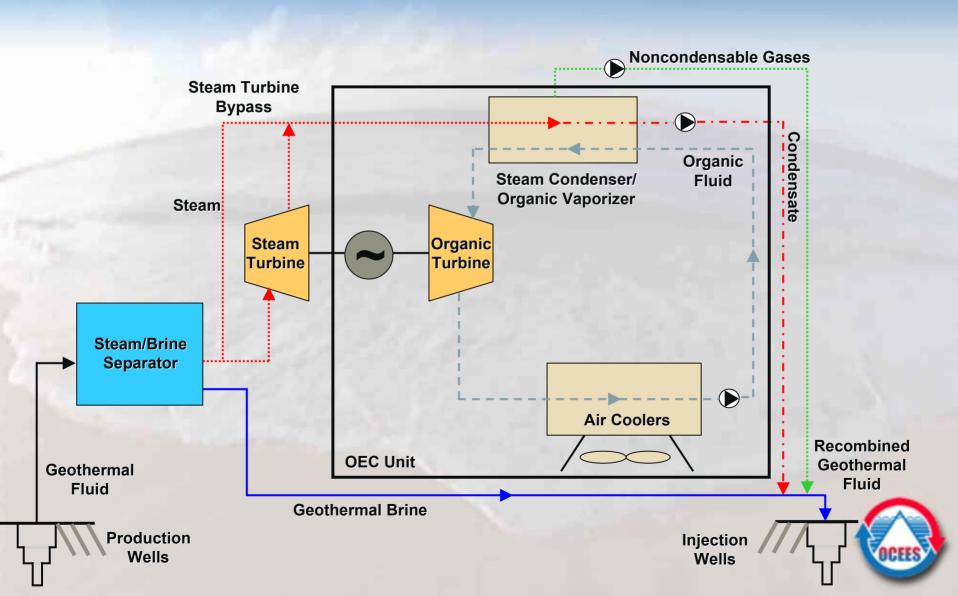
Large Industrial Facilities

Tesoro Refinery - Oahu

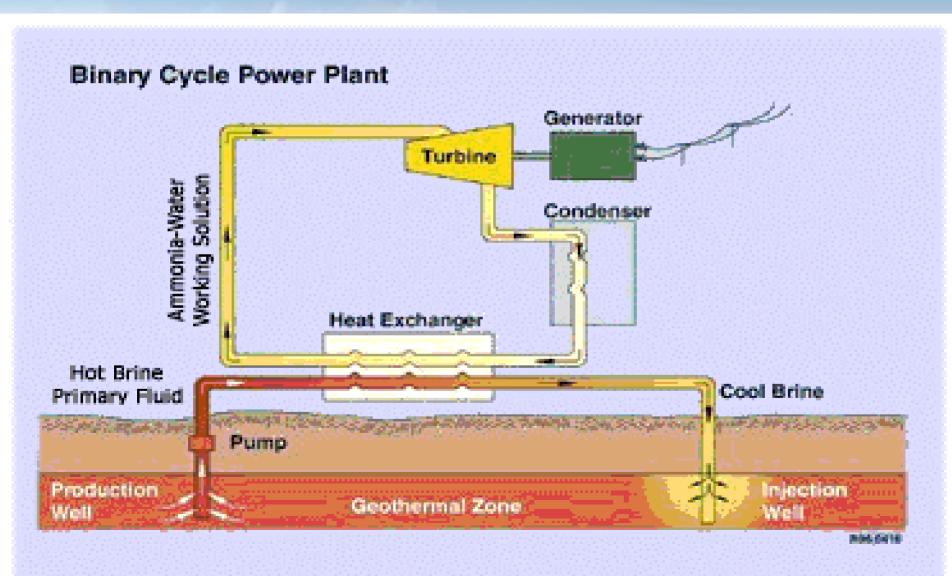
Tesoro Power Plant - Oahu

Geothermal Power Plants

Puna Geothermal Venture - Hawaii



Recent Lava Flow - Hawaii



Courtesy: HECO

Schematic of the Puna Geothermal Venture Facility

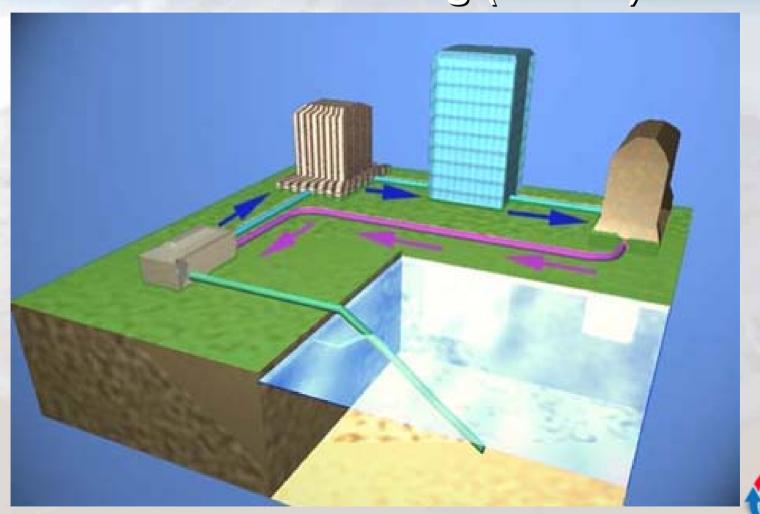
Simple Schematic of Binary Cycle in Geothermal Configuration

Husavik/Puna Resource Comparison

Husavik:

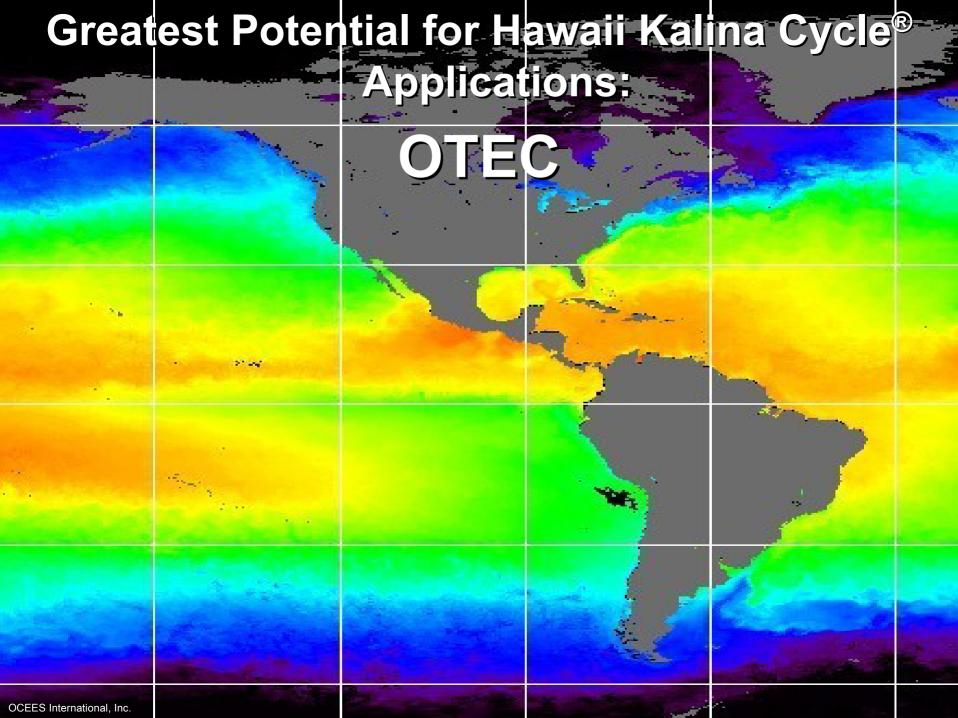
Brine Flow - 90 l/s @ 121 °C CW Flow - 180 l/s @ 4 °C Power Generated = 1.7 MW_{net} Total Cost \$1,875,000 (\$905/kW)

Puna:


Brine Flow - ~189 l/s @ 149 °C CW Flow - ~85 l/s @ 40.6 °C

Air Cooling? Ocean Water?

Used in Conjunction with Local Power Plant and


Seawater Air Conditioning (SWAC) Facility

Providing the Power Cycle for OTEC Applications!

Predicted Heat Rate/Efficiency Gains by Power Plant Technology

- Geothermal Plants: ~30 50 %
- Coal/Biomass/Waste Plants: ~ 20%
- Diesel/
 Petroleum Plants: ~ 10 15%
- OTEC Plants: ~ 50 + %

Conclusions:

- Kalina Cycle® is Superior Technology to Traditional Rankine Cycle for Low Temperature/Bottoming Cycle Applications
- Hawaii has Significant Waste Heat Resources for Potential Kalina Cycle[®] Integration
- Integration Makes Good Environmental and Economic Sense Under Amenable Conditions
- Further Analysis for Specific Identified Applications is Warranted

